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Various approximate solutions to the second order secular equation ( ( G - F ) L = LA) in mole-
cular spectroscopy are considered. New relations between them are developed and their validities 
tested empirically. It is found that the methods are decreasingly valid in the following order: 
a. „Verfahren der nächsten Lösung" which considers the point on the surface of all real allowed 

solutions of F nearest to that corresponding to completely uncoupled oscillators. 
b. A distribution of the potential energy in vt of V22 = — V12 or F n = 100%. 
c. F22 a minimum, equivalent to L12=0, V12=—2 V22 in vt and in v2 F22=100%. This is the 

easiest solution to calculate (L matrix approximation method). 
d. The "Modified Valence Force Field" where F 1 2 =0 . 
e. L matrix of maximum trace, equivalent to L = Gl/2, having L12=L21 . 
f. F n a maximum, equivalent to L 2 1 = 0 ; V12=—2Vn in v2 and in , V11 = 100%, being the 

second root of a quartic equation in F22 of which solution (b) is the first. 

Owing to the impossibility of solving exactly the 
secular equation ( G - F ) L = L A in molecular spec-
troscopy just using frequency data, even in the case 
of only 2 x 2 matrices, attention has been drawn to 
providing further conditions, either f r o m a physical 
force field or f rom mathematical constraints, to re-
move the indeterminancy f rom the solutions. In this 
paper the validity of some of the latter methods are 
examined for the second order secular equation f o r 
molecules of the type XY O T . There the frequency 
connected mainly with the stretching motion lies 

a. SbH3(E) b. NO~3(E) c. B"13(E') 

Fig. 1. Variation of Fn and F2, as a function of F12 in mdyne 
/A for a. SbHs(E), b. N03 _ (E' ) , c. BI3(E'). Approximate 
solutions marked: I: Verfahren der nächsten Lösung; II: 
V22 = — V12; III: L12 = 0; IV: F 1 2 = 0 ; V: L matrix of maxi-

mum trace; VI: F u a maximum. 

1 P. T O R K I N G T O N , J . Chem. Phys. 17, 3 5 7 [ 1 9 4 9 ] . 

above that of the bending. The allowed solutions 
f o r m el l ipses 1 connecting each pair of the three 
f orce constants (Fn , F 1 2 and F22), the eccentricities 
of which depend on the mass ratio My/Mx, the 
smaller this the more nearly circular they being (see 
Fig . 1 ) . 

In Fig . 2 are shown the mean deviations of the 
solutions of the methods to be discussed f r o m the 
actual solutions fixed b y additional data, they being 
given as a funct ion of My/Mx. For the measure of 
the deviation the obvious parameter to use, indepen-
dent of the individual f orce constants, is the propor -
tion of the ellipse c ircumference by which the cal-

Fig. 2. Deviations of the approximations as function of the 
mass ratio My/Mx for XYW molecules. Deviation measured 
as the ratio of the difference in F12 between the approximate 
solution and that fixed by additional data, to the total range 
of F12 allowing real solutions: a. „Verfahren der nächsten Lö-
sung"; b. V22 = — V12; c. L12 = 0; d. F 1 2 = 0 ; e. L matrix of 

maximum trace; f. Fn a maximum. 
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culated and experimental values differ. However 
whilst this is difficult to calculate, if the deviation 
be relatively small it may be approximated by the 
ratio of the difference in F1 2 to the total range of 
F12 allowing real solutions. From Fig. 2 it is im-
mediately seen that as the mass ratio tends to zero 
all the approximations become accurate, because the 
mixing between the normal vibrations (the cause of 
the difficulties in characterizing the exact solution) 
becomes very small, the oscillators being almost in-
dependent of each other. Unfortunately this obvious 
fact has often been disregarded and to test approxi-
mations frequently only their applications to vari-
ous hydride molecules have been considered. With 
these not only is the mass ratio so low that all ap-
proximations work, but also the anharmonicity cor-
rections are so large and illdefined that all methods 
based on using frequencies alone are doomed to 
failure because of the large errors the frequencies 
carry 2 . 

We have calculated the various approximate so-
lutions for a series of some 40 molecules whose 
constants using additional data have been publish-
ed, a representative selection of which are given in 
Table 1. Fig. 2 shows the best fit curves of the mean 
deviations of the approximate solutions as a func-
tion of M y / M x • 

However the scatter of the points is such as to 
obviate any attempt to correct an approximate re-
sult from the graph. This scatter may be a true 
physical phenomenum but judging by some of the 
molecules where several reported "exact" force 
fields have been published (e .g . BF3 E' species; 
Fn = 6.75 3 , 6.56 4 , 7.82 5 ? mdyne/Ä) much arises 
from this latter source. 

Discussion of the Approximations Examined 

a) Fn a Maximum 

S T R E Y 6 has suggested that for hydrides Fn a 
maximum gives the correct solution. However as 
discussed above one cannot really apply any of the 

2 J . L . DUNCAN and I . M . M I L L S , Spectrochim. Acta 2 0 , 523 
[1964], 

3 L . BECKMANN, L . G U T J A H R , and R . M E C K E , Spectrochim. Acta 
21, 141 [1965]. 

4 J. L . DUNCAN, J. Mol. Spectr. 13, 338 [1964]. 
5 I. L E V I N and S. ABRAMOWITZ , J. Chem. Phys. 43, 4213 

[1965]. 
6 G. S T R E Y , J. Mol. Spectr. 24, 87 [1967]. 

methods solely dependent on the frequencies to hy-
drides. Fig. 2 shows it to be quite hopeles for other 
molecules where the stretching frequency is higher 
than the bending, always seriously over-estimating 
Fi2 . However from similar arguments to those of 
P E A C O C K and M Ü L L E R 7 which showed that F2 2 a 
minimum means L1 2 = 0, F n a maximum can be 
shown to mean L2l = 0. This expression appears to 
be reasonably valid for cases where the bending 
mode is at higher frequency than the stretching 
(see 8 where after a high frequency separation this 
has been applied to Re0 3 Cl, i'ReCl < (5aiRe03). 

b) L Matrix of Maximum Trace 

H E R R A N Z and C A S T A N O 9 have proposed a method 
in which the L matrix has maximum trace, this cor-
responding to the most characteristic set of assign-
ments. P U L A Y and T Ö R Ö K 10 have also suggested a 
method using this best assignment technique, giving 
the condition that L = GK It has been pointed out 
by S T R E Y 6 that the two methods are identical. As G 
is symmetric, so hence is L, l. e. i j o — ^21 • 

This is 
physically unreasonable for, as shown in ref .1 2 L1 2 

is always much less than L 2 l . 
c) "Modified Valence Force Field" 

This often used force field just ignores the inter-
action term in the F matrix i. e. here F12 is set equal 
to zero. This means it can only work if there is little 
coupling between vibrations, otherwise the inter-
actions are always underestimated. Indeed from 
Table 1 and Fig. 2b it can be seen that often, when 
the mass ratio is above 1, no real solutions exist at 
this point. 

d) F22 a Minimum or Ll2 = 0 
(L matrix approximation method of M Ü L L E R ^ 

This solution has been proposed several times. As 
F22 a minimum it was one of the solutions favoured 
by T O R K I N G T O N 1 , S T R E Y 6 suggested it was applicable 
for molecules not containing hydrogen and B E C H E R 

7 C. J . PEACOCK and A . M Ü L L E R , J . Mol. Spectr. (in press). 
8 A. M Ü L L E R , B . K R E B S , and C. J . PEACOCK, Spectrochim. Acta 

(in press). 
9 J . H E R R A N Z and F. CASTANO, Spectrochim. Acta 22, 1965 

[1966]. 
1 0 P . P U L A Y and F. T Ö R Ö K , Acta Chim. Acad. Sei. Hungaricae 

44,287 [1965] ;47,274 [1966]. 



Molecule Experimental F A D I N I P.E .D . Method Li2 = 0 F12 = 0 L max. trace F N max. 

SOa(Ai) 10.41 ± 0.20 a) 10.42 10.26 10.45 9.99 11.11 11.22 SOa(Ai) 
0.32 ± 0.21 0.815 ± 0.007 0.37 0.819 0.22 0.821 0.40 0.818 0 0.839 1.40 0.932 1.94 1.083 

N0 2 (A ! ) 13.18 b) 12.72 13.00 13.72 11.49 15.34 15.54 N0 2 (A ! ) 
0.66 1.109 0.45 1.138 0.67 1.121 0.95 1.106 0 1.242 2.40 1.31 3.03 1.510 

PF3 (E) 4.96 c) 4.96 4.88 4.98 4.74 5.44 5.56 PF3 (E) 
0.21 0.49 0.21 0.490 0.13 0.491 0.23 0.489 0 0.503 0.91 0.590 1.46 0.814 

NF3 (E) 3.40 ± 0.10 D) 3.36 3.55 3.99 no real solution 4.94 5.19 NF3 (E) 
0.33 ± 0.04 0.90 ± 0.02 0.31 0.907 0.40 0.876 0.65 0.845 1.54 1.075 2.19 1.492 

SOs(E') 10.52 e) 10.33 10.44 10.76 10.01 12.48 12.76 SOs(E') 
- 0.30 0.623 - 0.18 0.626 - 0 . 2 5 0.621 - 0.46 0.618 0 0.643 - 2.19 0.898 - 3.19 1.303 

B u F 3 ( E ' ) 6.52, 6.75, 
7 82 

h) 6.45 6.61 7.37 5.51 12.65 13.74 

- 0 , 3 1 , - 0 , 3 9 , 0.51, 0.51, - 0.31 0.522 - 0 . 3 4 0.515 - 0.62 0.500 0 0.591 - 3.88 1.450 - 5.72 2.619 
- 0.81 0.50 

B11C13(E') 4.19 ± 0.05? H) 3.18 3.27 3.77 2.53 9.28 10.39 B11C13(E') 
- 0.51 ± 0.02 0.25 ± 0.002 - 0.16 0.262 - 0.19 0.256 - 0 . 3 6 0.248 0 0.318 - 3.44 1.364 - 5.00 2.486 

SnH4(F2) 2.247 2.242 2.242 2.242 2.242 2.242 SnH4(F2) 
0.003 0.140 0.003 0.140 0.002 0.140 0 0.140 0.015 0.140 0.024 0.140 

0S0 4 (F 2 ) 7.72 ± 0.03 i) 7.75 7.76 7.78 7.74 7.88 7.90 0S0 4 (F 2 ) 
- 0.03 ± 0.07 0.427 ± 0.003 0.03 0.425 0.05 0.424 0.09 0.424 0 0.425 0.46 0.445 0.72 0.482 

GeCl4(F2) 2.73 ± 0.13 j) 2.71 2.63 2.73 2.50 3.24 3.38 GeCl4(F2) 
0.13 ± 0.08 0.170 ± 0.003 0.12 0.170 0.07 0.171 0.13 0.170 0 0.178 0.65 0.264 0.96 0.406 

SiCl4(F2) 2.96 ± 0.09 j) 2.91 3.00 3.34 2.47 5.43 5.77 SiCl4(F2) 
0.14 ± 0.03 0.237 ± 0.005 0.13 0.238 0.16 0.233 0.28 0.227 0 0.273 1.59 0.590 2.20 0.959 

CF4(F2) 6.21 k) 5.85 6.09 7.67 no real solution 12.33 13.11 CF4(F2) 
0.83 1.02 0.75 1.056 0.80 1.028 1.29 0.948 4.00 1.742 5.29 2.57 

R h F 6 ( F I U ) 4.30 ± 0.1 1) 4.22 4.29 4.37 4.18 4.78 4.84 R h F 6 ( F I U ) 
- 0.10 ± 0.1 0.29 ± 0.01 - 0.03 0.296 - 0 . 0 9 0.292 - 0 . 1 6 0.291 0 0.298 - 0.73 0.370 - 1.03 0.477 

S e F e ( F I U ) 4.88 ± 0.1 1) 4.40 4.63 4.87 4.13 5.38 5.47 S e F e ( F I U ) 
- 0.44 ± 0.03 0.64 ± 0.01 - 0.13 0.680 - 0.25 0.657 - 0.42 0.648 0 0.721 - 1.00 0.738 - 1.34 0.874 

SF6(FIu) 4.75 ± 0.15 1) 4.71 4.84 5.79 no real solution 7.18 7.43 SF6(FIu) 
- 0.74 ± 0.03 1.10 ± 0 . 0 3 - 0.73 1.104 - 0 . 7 6 1.085 - 1.10 1.016 - 2.08 1.251 - 2.59 1.53 

Table 1. Values of the 2 x 2 F matrix elements for various approximations in units of mdyne/Ä, frequencies taken from experimental references. 
a) Y. M O R I N O and K . KUCHITSU, J . Mol. Spectr. 13, 9 5 [ 1 9 6 4 ] . b) G. R . B I R D , J . C. B A I R D , A. W. JACHE, J . A . HODGESON, R . F. C U R L , J R . , A . C. K U N K L E , J . W. B R A N F O R D , 
J . R A S T R U P - A N D E R S E N , and J . ROSENTHAL, J . Chem. Phys. 4 0 , 3 3 7 8 [ 1 9 6 4 ] . c) A N N A M . M I R R I , J . Chem. Phys. 4 7 , 2 8 2 3 [ 1 9 6 7 ] . d) W . SAWODNY, A . R U O F F , C. J . P E A -
COCK, and A . M Ü L L E R , Mol. Phys. (in press), e) R . S T B L E V I K , B . A N D E R S E N , S . J . C Y V I N , and J . BRUNVOLL, Acta Chem. Scand. 21, 1 5 8 1 [ 1 9 6 7 ] . f) See ref. 3. g) See 
ref. 4. h) See ref. 5. i) Using £3 from I. W. L E V I N and S. A B R A M O W I T Z , Inorg. Chem. 5, 2 0 2 4 [ 1 9 6 6 ] . See also R . S. M A C D O W E L L , Inorg. Chem. 6 , 1 7 6 0 [ 1 9 6 7 ] . j) R . 
KEBABCIOGLU, A . M Ü L L E R , and C. J . PEACOCK, Z. Naturforsch. 23 a, 7 0 3 [ 1 9 6 8 ] . k) T. SHIMANUCHI, I. N A K A G A W A , J . H I R A I S H I , and M . ISHII , J . Mol. Spectr. 19, 7 8 [ 1 9 6 6 ] . 

1) H . K I M , P. A. SOUDER, and H . H . CLAASEN, J. Mol. Spectr., in press. o to 



and B A L L E I N 1 1 have also suggested it. M Ü L L E R 1 2 put 
f o r w a r d the solution L12 = 0 g iv ing a series o f physi-
cal reasons f o r its applicabil ity. Later PEACOCK and 
M Ü L L E R 7 showed that the two solutions were identi-
cal and derived simple equations a l lowing ready 
evaluation of the F matrix elements without solu-
t ion of the secular equation, making it the easiest 
of the approx imat ions to a p p l y : 

X2 G12 

11 " Gi i det G 
V - ~ 3 . F _ 

det G det G 

B y the use of this approx imat ion MÜLLER 1 2 was 
able to explain the mass dependence of Cor io l i s 
c oup l ing constants. F r o m Fig . 2 it is however seen 
that it is only really valid when M y < M x otherwise 
it tends to overestimate the interaction term. 

e) Potential Energy Distribution Method 

BECHER and BALLEIN 11 have proposed f r o m em-
pirical observat ion, a method in which a definite 

potential energy distribution ( P . E . D . ) is favoured . 
In ref. 1 1 it is g iven as, in vx V12 = — 2 V22. H o w -
ever using the normal def init ion of P . E . D . 1 3 f r o m 
the def init ion of the potential energy in the i t h nor-
mal m o d e : 

Vi= \Qi 2 Fjk Lji Lki 
j,k 

the distribution is g iven b y the ratio of terms of this 
equation. H e n c e f o r the 2 x 2 case in vx 13a: 

= ^n ^n2; V12 = 2 F12LnL21; V22 = F22L2x. 

Using this def init ion it has been s h o w n 7 that the 
distribution in vx: V12 = — 2 V22 is identical to so-
lution d. F r o m the calculations in ref. 11 it would 
appear that P . E . D . is used without the factor 2 in 
the V12 term, and hence the approx imat ion should 
read V22 = — VX2 (when f o r a normal ized distribu-
tion Vxx = 100%). It must be noted that this can 
c o r r e s p o n d to up to f o u r d i f ferent sets of constants, 
f o r using this constraint one m a y derive a compl i -

Force constants .L-Matrix Higher freq. P . E . D . Lower freq. P .E .D. 

F12 F11 F 22 LN L\2 L2x L22 VN Fl2 F22 VN F12 V22 

a) 0.179 1.135 0.293 0.340 0.055 - 0.670 0.108 72.5 — 45.0 72.5 38.1 23.7 38.2 a) 0.329 2.063 0.198 0.345 0.006 - 0.648 0.201 135.2 — 81.0 45.8 0.8 9.0 90.2 b) 0.479 2.602 0.204 0.345 - 0.014 - 0.634 0.239 170.3 — 115.5 45.2 6.1 — 37.2 131.1 
5.433 13.066 2.282 0.232 - 0.255 - 0.277 0.619 388.6 — 384.9 96.3 9525.7 — 19243.8 9818.1 

c) 5.583 13.303 2.365 0.227 - 0.260 - 0.263 0.625 376.6 — 366.7 90.2 10087.6 — 20361.6 10374.0 
5.733 13.536 2.450 0.221 - 0.265 - 0.249 0.631 363.4 — 347.0 83.6 10665.6 — 21511.0 10945.4 
7.234 15.408 3.416 0.136 - 0 . 3 1 7 - 0.060 0.675 158.2 — 64.9 6.7 17343.3 _ 34738.1 17494.8 
7.384 15.496 3.538 0.122 - 0.323 - 0.028 0.678 126.6 — 28.2 1.6 18104.6 — 36234.1 18229.6 

d) 7.534 15.518 3.677 0.102 - 0.329 0.012 0.678 89.6 10.1 0.3 18886.2 — 37761.8 18975.5 
7.684 15.149 3.918 0.055 - 0.340 0.108 0.669 25.0 49.9 25.1 19710.4 — 39320.7 19710.3 
7.534 14.222 4.012 0.006 - 0.345 0.201 0.648 0.3 10.1 89.6 18975.6 — 37761.8 18886.3 
7.384 13.683 4.007 0.014 - 0.345 - 0.239 0.634 1.6 — 28.2 126.6 18229.6 — 36234.3 18104.6 
7.234 13.210 3.984 0.030 - 0.343 - 0.268 0.623 6.7 — 64.9 158.2 17494.8 — 34738.1 17343.3 
5.433 8.825 3.378 0.141 - 0.315 - 0.457 0.501 96.3 — 384.9 388.6 9818.1 — 19243.9 9525.8 

e) 5.283 8.507 3.316 0.147 - 0.312 - 0.468 0.491 102.0 — 401.5 399.6 9277.6 — 18157.5 8980.0 
5.132 8.193 3.252 0.154 - 0.308 - 0.478 0.481 • 107.2 — 416.6 409.4 8752.5 — 17102.7 8450.2 
2.130 2.749 1.760 0.265 - 0.221 - 0.631 0.249 106.4 — 392.6 386.2 1502.8 — 2625.7 1222.9 

e) 1.980 2.522 1.674 0.270 - 0.215 - 0.636 0.234 101.3 — 375.2 373.8 1302.6 — 2232.8 1030.2 
1.830 2.301 1.586 0.275 - 0.208 - 0.642 0.219 95.9 — 356.2 360.2 1117.8 — 1871.4 853.6 
1.680 2.087 1.497 0.280 - 0.201 - 0.647 0.203 90.2 — 335.6 345.4 948.3 — 1541.5 693.2 
0.629 0.876 0.795 0.317 - 0.136 - 0.675 0.060 48.5 — 148.4 200.0 183.2 — 114.9 31.7 
0.479 0.788 0.673 0.233 - 0.122 - 0.678 0.028 45.2 — 115.5 170.3 131.1 — 37.2 6.1 
0.329 0.767 0.533 0.329 0.102 - 0.678 0.012 45.8 — 81.0 135.2 90.2 9.0 0.8 
0.179 1.134 0.293 0.340 0.055 - 0.670 0.108 72.5 — 45.0 72.5 38.2 23.7 38.1 

Table 2. Values of force constants in mdyne/Ä, Matrix elements in (a.m.u) ~h and potential energy distribution in % for 
CI4 (F2 species). The various points mentioned in the text are marked as follows: a) „Verfahren der nächsten Lösung", po-
tential energy distribution method, b) L 1 2 = 0 , F22 a minimum, c) L matrix of maximum trace, L12 = L 2 1 . d) F u a maximum, 
L 2 1 = 0 . e) 3rd and 4th solutions of the quartic equation of which "a" and " d " are the first two. 

1 1 H . J . B E C H E R and K . B A L L E I N , Z . Phys. Chem. Frankfurt 5 4 , 1 2 A . M Ü L L E R , Z . Phys. Chem. Leipzig (in press). 
3 0 2 [ 1 9 6 7 ] . 1 3 Y . M O R I N O and K . K L C H I T S U , J. Chem. Phys. 2 0 , 1 8 0 9 [ 1 9 5 2 ] . 



cated quartic equation in F22, the smallest root of 
which represents this solution, whilst the next root 
is when Fn is a maximum. This is obvious from the 
equations above, for as L21 = 0 when Fn is a maxi-
mum, V12 and V22 in vt are both zero. Although ex-
plicit evaluation of the quartic equation is not pos-
sible it may be seen that when the ratio My/Mx is 
very high (e. g. BI 3 , CI4) there are four real roots 
(see Table 2 ) , normally only two, but when My/Mx 
tends to zero these coincide (see SiH4 in Table 1) . 

This approximation is seen from Fig. 2 to be an 
improvement on the others, though generally repre-
senting too small a value of FX2 . 

f ) „ Verfahren der nächsten Lösung" 

F A D I N I 14 has proposed a method which, unlike 
most of the above, is applicable to problems other 
than the 2 x 2 . In the n(n + l ) / 2 dimensional space 
represented by the force constants of the n x n prob-
lem the nearest point on the hypersurface represent-
ing the infinity of real solutions to the point corre-
sponding to completely uncoupled oscillators (i. e. 
diagonal F and G matrices) is chosen as the cor-

13a This usually being normalised so that the sum of Vjj = 100%. 

rect solution. Whereasyet no physical reasons have 
been advanced for its validity, it may be seen from 
Fig. 2 that it is the best of the approximate methods 
yet developed although F12 is generally under-
estimated. Unfortunately the method is rather dif-
ficult to evaluate. 

From the selection of examples in Table 1 it can 
be seen that the trends shown in Fig. 2 are obeyed 
although in individual cases variation exists e. g. 
whereas SF6 shows the P.E.D. method to be much 
better than L12 = 0, in SeF6 this is reversed, possibly 
meaning that the force field for SeF6 is not accura-
tely determined. However it is obvious that provided 
their limitations are realized, when no additional 
data are available mathematical approximation me-
thods may be succesfully used, or alternatively when 
additional data are available they may give an ad-
ded check, for if their deviation be far outside that 
in Fig. 2 more critical examination of the data 
would be called for. 
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